A prospective evaluation of the IOTA Logistic Regression Model LR2 for the diagnosis of ovarian cancer

N. NUNES*, J. YAZBEK†, G. AMBLER‡, W. HOO*, J. NAFTALIN* and D. JURKOVIC*

*Gynaecological Diagnostic Outpatient Treatment Unit, University College Hospital, London, UK; †Department of Gynaecological Oncology, Imperial College Healthcare NHS Trust Hospital, London, UK; ‡Department of Statistical Science, University College London, UK

KEYWORDS: diagnosis; IOTA; logistic regression; ovarian cancer; ultrasound

ABSTRACT

Objectives To assess the accuracy of the IOTA Logistic Regression Model LR2 for the diagnosis of ovarian cancer.

Methods This was a prospective single-center study of women with an ultrasound diagnosis of an adnexal tumor. They were all examined by a single Level II ultrasound operator, who had received training in the systematic examination of ovarian tumors in accordance with the IOTA guidelines. In all women the likelihood of the adnexal lesion being malignant was calculated using the IOTA LR2 model. All women underwent surgery within 120 days of ultrasound examination and the ultrasound findings were compared with operative findings and the final histological diagnosis.

Results 124 women were included in the final analysis. The mean age was 53.2 (range, 20–91) years and 61/124 (49.2%) women were postmenopausal. 66/124 (53.2%) women had malignant lesions on postoperative histological examination. The IOTA LR2 model had a sensitivity of 97.0% (95% CI, 89.5–99.6%) and a specificity of 69.0% (95% CI, 55.5–80.5%). The area under the receiver-operating characteristics curve was 0.93 (SE, 0.022; 95% CI, 0.89–0.97), which was not significantly different from 0.92 (SE, 0.018) reported in the original study (P > 0.05).

Conclusion When evaluated prospectively the accuracy of the IOTA LR2 model was similar to that reported in the original study: Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

INTRODUCTION

Preoperative differentiation between benign and malignant ovarian tumors is difficult. A large number of scoring systems and diagnostic models have been developed in recent years in order to facilitate the detection of ovarian cancer on ultrasonography1–3. The majority of these tests were based on retrospective analysis of small datasets, and their accuracy tends to be poor when evaluated prospectively4–5.

The International Ovarian Tumor Analysis (IOTA) collaboration started several years ago and included nine European centers that participated in the recruitment of patients6. The strengths of this collaboration are a uniform approach to ultrasound assessment of adnexal lesions, a large dataset and the use of robust statistical methods. The main aim of the collaboration was to design models for the diagnosis of ovarian cancer, which could be used in routine clinical practice by non-expert operators of average skill and experience. The majority of routine gynecological ultrasound examinations worldwide are carried out by sonographers who are usually classified as Level II operators7–8. Level II examiners tend to describe morphological appearances of adnexal tumors in detail, but unlike the experts (Level III operators), they are not trained to differentiate subjectively between benign and malignant tumors on ultrasound8. At present the subjective assessment of adnexal tumor morphology or ‘pattern recognition’ method is the most accurate way of diagnosing ovarian cancer on ultrasonography9. It has been hypothesized that a well designed and accurate diagnostic model would help Level II sonographers and other examiners without particular expertise in gynecological ultrasound to differentiate between benign and malignant adnexal tumors. Although the initial published results of the IOTA models were promising, the models have been developed and subsequently tested by expert ultrasound operators (Level III), who were also able to use the pattern recognition method to determine the nature of adnexal lesions6,10,11. This

Correspondence to: Mr D. Jurkovic, GDOTU, -1 Floor, Elizabeth Garrett Anderson University College Hospital, London, NW1 2BU, UK (e-mail: Davor.Jurkovic@uclh.nhs.uk)

Accepted: 13 December 2011

Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.
could have contributed positively to the accuracy of the IOTA diagnostic models. It is therefore unknown whether the IOTA models would perform equally well if used by operators with less expertise in gynecological ultrasonography.

The aim of our study was to prospectively evaluate the diagnostic accuracy of the IOTA Logistic Regression Model LR2 on a representative sample of adnexal lesions when all ultrasound examinations were performed by a non-expert ultrasound operator.

METHODS

This was a prospective single-center study conducted over a 17-month period from May 2009 to September 2010. All women attending our gynecological diagnostic unit routinely undergo a detailed transvaginal and transabdominal scan, which includes a systematic examination of the uterus, ovaries and adnexa. Women with ultrasound evidence of an adnexal tumor were first examined by a single non-expert operator, who performed a detailed assessment of the tumor characteristics using the IOTA protocol. The non-expert operator (N.N.) had received training in the systematic examination of ovarian tumors in accordance with the IOTA guidelines. She was not trained in tumor ‘pattern recognition’ and she was discouraged from attempting to differentiate subjectively between benign and malignant tumors on ultrasound scan.

Demographic data including the patient’s age, menopausal status, medical history and family history were recorded as part of the routine assessment. Women ≥ 50 years of age who had previously had a hysterectomy were defined as postmenopausal. In addition, morphological and Doppler characteristics of adnexal tumors were recorded in accordance with the IOTA protocol. A family history that included the number of first-degree relatives with ovarian or breast cancer was taken from each patient.

As with the original IOTA study, pregnant women, those unable to undergo a transvaginal scan and those who had surgery later than 120 days after the ultrasound scan were excluded from the final data analysis. In women with bilateral lesions, the lesion that was more likely to be malignant according to the IOTA model was included in the analysis.

The probability of an adnexal mass being malignant was estimated using the IOTA LR2 model. Six variables were used for the calculation: (1) age of the patient (in years); (2) presence of ascites (yes = 1, no = 0); (3) presence of blood flow within a solid papillary projection (yes = 1, no = 0); (4) maximum diameter of the solid component (expressed in mm, but with no increase if > 50 mm); (5) irregular internal cyst walls (yes = 1, no = 0); and (6) presence of acoustic shadows (yes = 1, no = 0). The probability of malignancy was calculated using the formula

\[y = \frac{1}{1 + e^{-z}}, \]

where \[z = -5.3718 + 0.0354 \times (1 + 1.6159 \times (2 + 1.1768 \times (3 + 0.0697 \times (4 + 0.9586 - 5) - 2.9486 \times 6)), \]

as described in the original IOTA study. The probability \(y \) is dichotomized at 0.1 to give a predictive diagnosis.

The non-expert operator had recorded the assessments of the IOTA variables in the research file and they were not made available to the clinicians who made the decisions about the patients’ management.

All women were then re-examined by expert ultrasound operators who advised the women on their management in accordance with our standard clinical protocols. Only women who underwent surgery were included in the data analysis. Surgical options varied from laparoscopic ovarian cystectomy to primary ovarian debulking surgery.

The IOTA LR2 model calculation of the risk of malignancy was performed only at the end of the study when data collection had been completed, and its accuracy was assessed using histology as the gold standard. Tumors were classified according to the criteria recommended by the International Federation of Gynecology and Obstetrics. Statistical analysis was performed using the software package Stata 11.1® (Stata Corp., College Station, TX, USA). The diagnostic accuracy of the IOTA LR2 model was assessed by calculating its sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), negative likelihood ratio (LR−) and the area under the receiver–operating characteristics curve (AUC). The \(\chi^2 \) method was used to compare differences in proportions between the results of the original IOTA study and those of the current study. As morphological analysis of the tumors using the IOTA protocol is performed routinely in our department and no therapeutic decisions were based on the IOTA model, our local research and development department advised that the study did not require formal ethical assessment and approval.

RESULTS

A total of 332 women were diagnosed with adnexal tumors during the study period. Of these, 141 (42.5%) women had surgery or a biopsy, while the remaining 191 (57.5%) were managed conservatively. Seventeen of the 141 (12.1%) women were excluded; three were pregnant and 14 did not have surgery within 120 days of their ultrasound examination, thus a total of 124 women were included in the final analysis (Figure 1). Their mean age was 53.2 (range, 20–91) years. There were 63 (50.8%) premenopausal and 61 (49.2%) postmenopausal women. 47 (37.9%) were referred by their general practitioner, 67 (54.0%) were tertiary referrals from another unit, eight (6.5%) attended as an emergency and two (1.6%) were referred via other routes. There were 58 (46.8% (95% CI, 38.2–55.5%)) benign, 9 (7.3% (95% CI, 3.9–13.2%)) borderline, 42 (33.9% (95% CI, 26.1–42.6%)) primary invasive malignant adnexal tumors and 15 (12.0% (95% CI, 7.5–19%)) metastatic tumors of the ovary. Of the 42 primary invasive malignant lesions there were 14 (33.3 %) Stage I, three (7.1%) Stage II, 13 (31.0%) Stage III and 12 (28.6%) Stage IV. Primary invasive
Prospective evaluation of IOTA LR2 model

Figure 1 Study flowchart.

There were 18 false positive and two false-negative cases (Table 1). Benign ovarian cystadenomas and mature cystic teratomas were responsible for 10/18 (55.6%) of all false-positive diagnoses of ovarian cancer. The first false-negative case was that of a premenopausal woman with large bilateral ovarian tumors whose histology showed a borderline mucinous tumor and an incidental finding of an appendix goblet cell carcinoid tumor. The other patient was a postmenopausal woman, also with bilateral ovarian tumors, which were metastatic from a gastrointestinal primary. The tumors were smooth and multilocular with no solid areas and no ascites. Tumor deposits were, however, seen in the pouch of Douglas.

In order to test for the possibility of bias due to increased operator experience during the study period we divided the data set into two halves. The performance of the IOTA LR2 model in the first 62 consecutive patients was not significantly different from the results in the 62 subsequently recruited women (sensitivity 94% vs. 100% (P = 0.152); specificity 61% vs. 78% (P = 0.063)).

The AUCs were not significantly different between the current study, the original IOTA report and the prospective IOTA validation study (Table 2).6,14 Sensitivity in our study was significantly better than in the original study (χ² = 6.162, P = 0.013), but it was not statistically different from the sensitivities in the validation study. Specificities in the IOTA validation study were significantly higher than in our study (external χ² = 21.1, P = 0.001; temporal χ² = 6.96, P = 0.008). The specificities in our study and the original study, however, were not significantly different.

Alternative cut-off points were investigated for our data. A cut-off of 6.4% instead of 10% would have given us 100% sensitivity, but the specificity would have fallen to 36.9% (Figure 2).

Table 1 Histological findings in women with a false-positive diagnosis of ovarian cancer using the International Ovarian Tumor Analysis Group logistic regression model LR2 (n = 18)

<table>
<thead>
<tr>
<th>Histological diagnosis</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystadenoma/cystadenofibroma</td>
<td>5 (27.8)</td>
</tr>
<tr>
<td>Mature cystic teratoma</td>
<td>4 (22.2)</td>
</tr>
<tr>
<td>Dermoid with cystadenoma</td>
<td>1 (5.6)</td>
</tr>
<tr>
<td>Pedunculated leiomyoma</td>
<td>1 (5.6)</td>
</tr>
<tr>
<td>Benign aspirate/pseudocyst</td>
<td>2 (11.1)</td>
</tr>
<tr>
<td>Torsion of benign cyst</td>
<td>2 (11.1)</td>
</tr>
<tr>
<td>Brenner tumor</td>
<td>1 (5.6)</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>1 (5.6)</td>
</tr>
<tr>
<td>Fat necrosis and inflammation—suspected actinomycosis</td>
<td>1 (5.6)</td>
</tr>
<tr>
<td>Total</td>
<td>18 (100)</td>
</tr>
</tbody>
</table>

DISCUSSION

Our study has shown that the accuracy of the IOTA LR2 model was similar, in the hands of a non-expert operator, to that found in the original IOTA study. Although AUCs were not significantly different in our and the two previous studies conducted by experts, there were some differences. The specificity was marginally higher in our study than in the original studies6,14, which were conducted by experts. The specificity in our study was lower than that reported in the two previous studies, particularly in comparison with the validation study. These differences could be explained by the operator effect on the performance of the model. It has previously been documented that the specificity of ultrasound diagnosis is higher when expert operators perform the examinations.10,12 Assessment of ovarian tumors during previous IOTA studies was performed by ultrasound experts. During data collection, the operators were also able to assess tumor characteristics using “pattern recognition”. In many cases the operators could have determined the type of ovarian tumor before collecting the data using the IOTA protocol. This is a potential source of bias that could have led to an overestimation of the model’s specificity.

Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

Ultrasound Obstet Gynecol 2012; 40: 000–000.
We considered the possibility that prior knowledge that the population was high risk could have contributed to the high false-positive rate and lower specificity of the test. We found that in fact, the proportion of false-positive findings was less in women who presented as tertiary referrals than in low-risk women. While it is true that our study population was smaller than those in the original and validation IOTA studies, the number of cancer cases was more than 10 per model variable, which is sufficiently large for statistical analysis of its accuracy.

A very high sensitivity of the model, particularly in non-expert hands, is reassuring and indicates that it could be used as a primary test in women with adnexal tumors without fear of missing a significant number of malignant lesions. The LR of the model is also high and therefore women with negative results could be managed conservatively or by using minimally invasive surgery.

The large number of false-positive results in our study was mainly caused by the presence of solid content within 15/18 (83.3%) incorrectly classified benign lesions. In some cases hydropic areas in benign cystic teratomas or precipitated debris in ovarian endometriomas were misclassified as solid components within the cyst. Ascites due to other non-malignant medical conditions may also cause false-positive results, as the model assumes that the adnexal lesion is the cause of the ascites. The PPV was 78.0%, which means that more than a fifth of presumed malignant lesions were in fact benign. Women with positive results suggestive of cancer would therefore require additional tests to check the accuracy of the diagnosis in order to avoid subjecting those with benign lesions to unnecessary major gynecological staging operations.

It is not clear what would be the optimal secondary tests in women with suspected cancer on the LR2 model, but subjective assessment by an expert operator would probably be most helpful. The IOTA collaboration has developed another diagnostic model (LR1), which could potentially be more specific than the LR2 model evaluated in this study. The risk-of-malignancy calculation in the LR1 model is based on the analysis of 12 different demographic and ultrasound variables. The number of ovarian cancers in our dataset was not sufficiently large to assess the accuracy of the LR1 model as well, but our study is ongoing and we hope to report on our experience with the LR1 model in the near future.

Table 2 Accuracy of the International Ovarian Tumor Analysis Group (IOTA) Logistic Regression Model LR2: comparison of findings in the original and prospective validation IOTA studies with those of the current study

<table>
<thead>
<tr>
<th>Study</th>
<th>AUC (95% CI)</th>
<th>SE</th>
<th>Sensitivity (% (95% CI)</th>
<th>Specificity (% (95% CI)</th>
<th>LR+ (95%CI)</th>
<th>LR− (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original IOTA study</td>
<td>0.92</td>
<td>0.018</td>
<td>89 (75–92)</td>
<td>73 (65–80)</td>
<td>3.3 (1.3–9.9)</td>
<td>0.15 (0.02–0.73)</td>
</tr>
<tr>
<td>Prospective validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOTA study14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External (n = 997)</td>
<td>0.95 (0.93–0.96)</td>
<td>–</td>
<td>91.8 (80.8–100)</td>
<td>85.6 (70.1–94.2)</td>
<td>6.36 (3.33–7.63)</td>
<td>0.10 (0.06–0.14)</td>
</tr>
<tr>
<td>Temporal (n = 941)</td>
<td>0.92 (0.90–0.94)</td>
<td>–</td>
<td>99.2 (82.9–100)</td>
<td>79.8 (66.2–88.6)</td>
<td>4.42 (2.78–5.49)</td>
<td>0.14 (0.1–0.19)</td>
</tr>
<tr>
<td>Current study (n = 124)</td>
<td>0.93 (0.89–0.97)</td>
<td>0.022</td>
<td>97 (92.3–98.9)</td>
<td>69 (60.4–76.5)</td>
<td>3.12 (2.12–4.6)</td>
<td>0.044 (0.01–0.17)</td>
</tr>
</tbody>
</table>

AUC, area under receiver–operating characteristics curve; LR−, negative likelihood ratio; LR+, positive likelihood ratio; SE, standard error.

Figure 2 Receiver–operating characteristics curve of the International Ovarian Tumor Analysis Logistic Regression Model LR2.
In conclusion our study suggests that the overall accuracy of the IOTA LR2 model is maintained when used by a non-expert operator. Although the high test sensitivity is reassuring the specificity is too low to allow the use of the model as a sole test to diagnose ovarian cancer. Further larger studies including mainly low-risk women would be helpful to confirm these findings and to determine what secondary tests would need to be employed in order to reduce the number of false-positive findings.

ACKNOWLEDGMENT
Dr Gareth Ambler received a proportion of funding from the Department of Health’s NIHR Biomedical Research Centres funding scheme.

REFERENCES
QUERIES TO BE ANSWERED BY AUTHOR & EDITOR

IMPORTANT NOTE: Please list all query corrections in an e-mail and send to the production contact as detailed in the covering e-mail, or mark all corrections directly on the proofs and send the scanned copy via e-mail. Please do not send corrections by annotated PDF file and do NOT mark your corrections on this query sheet.

Queries to Author:

AQ1 Please check that all affiliations are correct and complete
AQ2 Is ‘Torsion of benign cyst’ OK?
AQ3 Au: “(Table Y)” deleted here, as you still seem to be referring to findings shown in Table 2, ok? (OS)
AQ4 ‘was similar in the hands of a non-expert operator compared to the findings in the original IOTA study’ changed to ‘was similar, in the hands of a non-expert operator, to that found in the original IOTA study’. OK?
AQ5 “M1” changed to ‘LR 1’ in this paragraph to match style for LR2, ok? (OS)
AQ6 ‘in progress’ changed to ‘ongoing’; OK?
After receipt of your corrections your article will be published initially within the online version of the journal.

PLEASE AIM TO RETURN YOUR CORRECTIONS WITHIN 48 HOURS OF RECEIPT OF YOUR PROOF, THIS WILL ENSURE THAT THERE ARE NO UNNECESSARY DELAYS IN THE PUBLICATION OF YOUR ARTICLE

- **READ PROOFS CAREFULLY**
 - Once published online or in print it is not possible to make any further corrections to your article
 - This will be your only chance to correct your proof
 - Please note that the volume and page numbers shown on the proofs are for position only

- **ANSWER ALL QUERIES ON PROOFS** (Queries are attached as the last page of your proof.)
 - List all corrections and send back via e-mail to the production contact as detailed in the covering e-mail, or mark all corrections directly on the proofs and send the scanned copy via e-mail. Please do not send corrections by fax or post

- **CHECK FIGURES AND TABLES CAREFULLY**
 - Check size, numbering, and orientation of figures
 - All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article
 - Review figure legends to ensure that they are complete
 - Check all tables. Review layout, title, and footnotes

- **COMPLETE COPYRIGHT TRANSFER AGREEMENT (CTA)** if you have not already signed one
 - Please send a scanned signed copy with your proofs by e-mail. **Your article cannot be published unless we have received the signed CTA**

- **OFFPRINTS**
 - Free access to the final PDF offprint or your article will be available via Author Services only. Please therefore sign up for Author Services if you would like to access your article PDF offprint and enjoy the many other benefits the service offers.

Additional reprint and journal issue purchases

- Should you wish to purchase additional copies of your article, please click on the link and follow the instructions provided: http://offprint.cosprinters.com/cos/bw/
- Corresponding authors are invited to inform their co-authors of the reprint options available.
- Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic form, nor deployed in part or in whole in any marketing, promotional or educational contexts without authorization from Wiley. Permissions requests should be directed to mailto: permissionsuk@wiley.com
- For information about ‘Pay-Per-View and Article Select’ click on the following link: http://www3.interscience.wiley.com/aboutus/ppv-articleselect.html
WILEY AUTHOR DISCOUNT CLUB

We would like to show our appreciation to you, a highly valued contributor to Wiley’s publications, by offering a unique 25% discount off the published price of any of our books*. All you need to do is apply for the Wiley Author Discount Card by completing the attached form and returning it to us at the following address:

The Database Group (Author Club)
John Wiley & Sons Ltd
The Atrium
Southern Gate
Chichester
PO19 8SQ
UK

Alternatively, you can register online at www.wileyeurope.com/go/authordiscount

Please pass on details of this offer to any co-authors or fellow contributors.

After registering you will receive your Wiley Author Discount Card with a special promotion code, which you will need to quote whenever you order books direct from us.

The quickest way to order your books from us is via our European website at:

http://www.wileyeurope.com

Key benefits to using the site and ordering online include:
- Real-time SECURE on-line ordering
- Easy catalogue browsing
- Dedicated Author resource centre
- Opportunity to sign up for subject-orientated e-mail alerts

Alternatively, you can order direct through Customer Services at:
cs-books@wiley.co.uk, or call +44 (0)1243 843294, fax +44 (0)1243 843303

So take advantage of this great offer and return your completed form today.

Yours sincerely,

Verity Leaver
Group Marketing Manager
author@wiley.co.uk

*TERMS AND CONDITIONS

This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books for their personal use. There must be no resale through any channel. The offer is subject to stock availability and cannot be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to amend the terms of the offer at any time.
To enjoy your 25% discount, tell us your areas of interest and you will receive relevant catalogues or leaflets from which to select your books. Please indicate your specific subject areas below.

Accounting	[]	Architecture	[]
Public	[]	Business/Management	[]
Corporate	[]		
Chemistry	[]	Computer Science	[]
Analytical	[]		
Industrial/Safety	[]	Database/Data Warehouse	[]
Organic	[]	Internet Business	[]
Inorganic	[]	Networking	[]
Polymer	[]	Programming/Software	[]
Spectroscopy	[]	Development	[]
		Object Technology	[]
Encyclopedia/Reference	[]		
Business/Finance	[]	Engineering	[]
Life Sciences	[]	Civil	[]
Medical Sciences	[]	Communications Technology	[]
Physical Sciences	[]	Electronic	[]
Technology	[]	Environmental	[]
		Industrial	[]
		Mechanical	[]
Earth & Environmental Science	[]		
Hospitality	[]	Finance/Investing	[]
		Economics	[]
		Institutional	[]
		Personal Finance	[]
Genetics	[]	Life Science	[]
Bioinformatics/	[]	Landscape Architecture	[]
Computational Biology	[]		
Proteomics	[]	Mathematics	[]
Genomics	[]	Statistics	[]
Gene Mapping	[]		
Clinical Genetics	[]	Manufacturing	[]
Medical Science	[]	Materials Science	[]
Cardiovascular	[]		
Diabetes	[]	Psychology	[]
Endocrinology	[]	Clinical	[]
Imaging	[]	Forensic	[]
Obstetrics/Gynaecology	[]	Social & Personality	[]
Oncology	[]	Health & Sport	[]
Pharmacology	[]	Cognitive	[]
Psychiatry	[]	Organizational	[]
		Developmental & Special Ed	[]
		Child Welfare	[]
		Self-Help	[]
Non-Profit	[]	Physics/Physical Science	[]

Please complete the next page /
I confirm that I am (*delete where not applicable):

a **Wiley** Book Author/Editor/Contributor* of the following book(s):

ISBN:

ISBN:

a **Wiley** Journal Editor/Contributor/Editorial Board Member* of the following journal(s):

SIGNATURE: …………………………………………………………………………………… **Date:** ………………………………………

PLEASE COMPLETE THE FOLLOWING DETAILS IN BLOCK CAPITALS:

TITLE: (e.g. Mr, Mrs, Dr) …………………… **FULL NAME:** …………………………………………………………………………………

JOB TITLE (or Occupation): ………

DEPARTMENT: ………..

COMPANY/INSTITUTION: ………

ADDRESS: ………

……

TOWN/CITY: ………

COUNTY/STATE: ………

COUNTRY: ………

POSTCODE/ZIP CODE: ………

DAYTIME TEL: ………

FAX: ……

E-MAIL: ………

YOUR PERSONAL DATA

We, John Wiley & Sons Ltd, will use the information you have provided to fulfil your request. In addition, we would like to:

1. Use your information to keep you informed by post of titles and offers of interest to you and available from us or other Wiley Group companies worldwide, and may supply your details to members of the Wiley Group for this purpose.

 [] Please tick the box if you do **NOT** wish to receive this information

2. Share your information with other carefully selected companies so that they may contact you by post with details of titles and offers that may be of interest to you.

 [] Please tick the box if you do **NOT** wish to receive this information.

E-MAIL ALERTING SERVICE

We also offer an alerting service to our author base via e-mail, with regular special offers and competitions. If you **DO** wish to receive these, please opt in by ticking the box [].

If, at any time, you wish to stop receiving information, please contact the Database Group (databasegroup@wiley.co.uk) at John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, PO19 8SQ, UK.

TERMS & CONDITIONS

This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books for their personal use. There should be no resale through any channel. The offer is subject to stock availability and may not be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to vary the terms of the offer at any time.

PLEASE RETURN THIS FORM TO:

Database Group (Author Club), John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, PO19 8SQ, UK author@wiley.co.uk

Fax: +44 (0)1243 770154