Appearance of the fetal posterior cranial fossa at 11 + 3 to 13 + 6 gestational weeks on transabdominal ultrasound examination

D. EGLE*, I. STROBL*, V. WEISKOPF-SCHWENDINGER*, E. GRUBINGER*, F. KRAXNER*, I. S. MUTZ-DEHBALAIE*, A. STRASAK† and M. SCHEIER*

*Department of Gynaecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria; †Department of Medical Statistics, Informatics and Health Economics, Innsbruck Medical University, Innsbruck, Austria

KEYWORDS: cisterna magna; fetal posterior cranial fossa; first-trimester scan; fourth ventricle; prenatal diagnosis; spina bifida; TCD

ABSTRACT

Objectives To describe the sonographic appearance of the structures of the posterior cranial fossa in fetuses at 11 + 3 to 13 + 6 weeks of pregnancy and to determine whether abnormal findings of the brain and spine can be detected by sonography at this time.

Methods This was a prospective study including 692 fetuses whose mothers attended Innsbruck Medical University Hospital for first-trimester sonography. In 3% (n = 21) of cases, measurement was prevented by fetal position. Of the remaining 671 cases, in 604 there was either a normal anomaly scan at 20 weeks or delivery of a healthy child and in these cases the transcerebellar diameter (TCD) and the anteroposterior diameter of the cisterna magna (CM), measured at 11 + 3 to 13 + 6 weeks, were analyzed. In 144 fetuses, the anteroposterior diameter of the fourth ventricle (4V) was also measured. In 25 fetuses, intra- and interobserver repeatability was calculated.

Results We observed a linear correlation between crown-rump length (CRL) and CM (CM = 0.0536 × CRL − 1.4701; R² = 0.688), TCD (TCD = 0.1482 × CRL − 1.2083; R² = 0.701) and 4V (4V = 0.0181 × CRL + 0.9186; R² = 0.118). In three patients with posterior fossa cysts, measurements significantly exceeded the reference values. One fetus with spina bifida had an obliterated CM and the posterior border of the 4V could not be visualized.

Conclusions Transabdominal sonographic assessment of the cranial posterior fossa is feasible in the first-trimester scan. Measurements of the 4V, the CM and the TCD performed at this time are reliable. The established reference values assist in detecting fetal anomalies. However, findings must be interpreted carefully, as some supposed malformations might be merely delayed development of brain structures.

INTRODUCTION

Early diagnosis of malformations has long been a goal in fetal medicine. Widespread implementation of nuchal translucency thickness (NT) measurement has lead to increasing numbers of women undergoing ultrasound examination of their fetuses in the first trimester of pregnancy. Assessment of fetal anatomy has always been part of this early scan, and recent years have seen significant improvement in ultrasound technology, thus affording better resolution and hence the ability to visualize smaller structures.

Our study aimed to examine the structures of the posterior cranial fossa in fetuses at 11 + 3 to 13 + 6 weeks of pregnancy and to determine whether it is possible sonographically to detect malformations of the posterior fossa and spine at this time.

SUBJECTS AND METHODS

This was a prospective study of 692 fetuses referred for routine first-trimester ultrasound examinations to the Fetal Medicine Clinic of the Department of Gynaecology and Obstetrics of Innsbruck Medical University Hospital.

Correspondence to: Dr M. Scheier, Innsbruck Medical University Hospital, Department of Gynaecology and Obstetrics, Anichstrasse 35, 6020 Innsbruck, Austria (e-mail: matthias.scheier@uki.at)

Accepted: 24 January 2011
This center serves as a tertiary referral unit as well as providing screening services for a low-risk population. The study was approved by the local ethics committee, and informed consent was obtained from all patients.

In addition to the routine first-trimester scan, in all fetuses with a crown–rump length (CRL) between 45 and 84 mm, we investigated the posterior fossa using a Voluson E8 or Voluson 730 expert (GE Medical Systems Kretztechnik, Zipf, Austria) or a Aloka SSD 3500 (Aloka Inc., Tokyo, Japan) ultrasound machine. The fetal head was insonated through the anterior fontanelle in an axial fronto-occipital plane. To achieve this, the transducer was tilted caudally from the plane used to measure the biparietal and fronto-occipital diameters (Figure 1), until the fourth ventricle (4V), the cisterna magna (CM) and the cerebellar nodules became visible (Figures 1 and 2). In contrast to the transverse insonation that is used for measurement of the biparietal and fronto-occipital diameters, we insonated in a fronto-occipital direction.

Measurement followed strict criteria. The correct insonation plane showed anteriorly the falx cerebri and the plexus choroideus, and posteriorly the brainstem, 4V, cerebellum and CM. Further criteria included adequate magnification (head filling the entire image) and optimal setting of the gain. Calipers had to be placed on the echogenic parts of the structures being investigated ('on to on', Figure 2), similar to caliper placement for NT measurement. Measurements were performed three times in each case and, of the three images stored, the one that best met all the criteria for measurement was selected for analysis.

Fetal position prevented the posterior fossa from being insonated in 21 (3.03%) of the 692 fetuses. In 671 fetuses we measured the distance between the outer margins of

Figure 1 Transabdominal sonography of the fetal head at 13 + 2 weeks: three-dimensional reconstruction with sagittal (a,c) and axial (b,d) cross-sections demonstrating the different insonation planes (white lines) for measurement of the biparietal diameter (a,b) and for depiction of the posterior fossa (c,d).
Fetal posterior cranial fossa

Figure 2 Transabdominal sonography of the head in a normal 12 + 4-week fetus, showing measurements of transcerebellar diameter (TCD), cisterna magna (CM) and fourth ventricle (4V). The indicated hyperechoic lines are the posterior border of the brainstem/anterior border of the 4V (1st line) and the posterior border of the 4V/anterior border of the CM (2nd line).

the cerebellar nodules (transcerebellar diameter, TCD) and the distance between the posterior border of the 4V and the inner side of the occipital bone (anteroposterior diameter of the CM). Of these, 604 fetuses had a normal 20-week scan in our tertiary level institution or were born healthy, and their data was used to construct reference values for TCD and CM. In 502 fetuses, we additionally measured the distance between the brainstem and the posterior border (i.e. the anteroposterior diameter) of the 4V. The anterior and posterior borders of the 4V were visible as two transverse echogenic lines, which were nearly identical in echogenicity to that of the skull. In 444 of these fetuses we could confirm normal development at the 20-week scan or at delivery and their data were used for construction of reference values for the 4V.

Intra- and interobserver repeatability were calculated in 25 fetuses using the method of Bland and Altman. For this purpose each of Sonographer 1 (M.S.) and Sonographer 2 (V.W.) scanned the fetuses and measured TCD, CM and 4V twice. Sonographers were not present at the same time during scanning and both were blinded to the results on the screen. The intraobserver repeatability was calculated using pairs of measurements made by Sonographer 1 and the interobserver repeatability was calculated using the first of each observer’s pair of measurements. In all cases, measurements were performed during a single scanning session.

Statistical analysis was performed with SPSS software, version 17.0 (SPSS Inc., Chicago, IL, USA), and MedCalc, version 5.00 (MedCalc Software, Mariakerke, Belgium).

RESULTS

We found a linear correlation between CRL and each of CM, TCD and 4V (Figures 5–7). There was no correlation between BMI and each of TCD, CM and 4V. Measurements taken by the same sonographer were not significantly different for different ultrasound devices.

Intraobserver repeatability for Sonographer 1, gave a mean (limits of agreement) value for TCD of -0.02 (−1.30, 1.25) mm, for 4V of -0.13 (−1.21, +0.96) mm and for CM of 0.03 (−0.63, 0.69) mm. Interoobserver repeatability between Sonographer 1 and Sonographer 2 gave results for TCD of 0.17 (−1.76, 2.11) mm, for 4V of 0.02 (−4.48, 0.52) mm and for CM of 0.00 (−0.84, 0.84) mm.

Four fetuses with abnormalities in the posterior fossa were excluded from analysis for construction of reference values; of these, three had a posterior fossa cyst (Figure 3). One of them was apparently isolated at the first-trimester scan, and the karyotype was normal. The cyst gradually resolved during the course of pregnancy; at 23 weeks the fetal brain, and in particular the posterior fossa, appeared normal and no other abnormalities were noted. Postnatal outcome was good. In another fetus, an isolated tiny atrioventricular septal defect was diagnosed at 16 gestational weeks and confirmed postnatally. The karyotype was normal. The third fetus had a posterior fossa cyst in combination with increased NT and disproportion of the cardiac ventricles with tricuspid regurgitation. In this fetus the karyotype was trisomy 13.

Figure 3 Transabdominal ultrasound image showing posterior fossa cyst (calipers) in a 13 + 0-week fetus.
Figure 4 Transabdominal ultrasound image showing posterior fossa in a 13 + 4-week fetus with spina bifida. Only the first line (posterior border of the brainstem (1st line)) is visible.

In all three patients, CM measurements were significantly above the normal range, being 4.9 mm, 4.7 mm and 5.0 mm, respectively.

Our series included one fetus with spina bifida at 13 + 4 gestational weeks (Figure 4). In this fetus, the 4V was displaced posteriorly and the CM obliterated. Because of this, the posterior echogenic line, produced by the posterior border of the 4V, disappeared and only the anterior line remained visible.

DISCUSSION

Improvements in ultrasound technology afford increasing spatial resolution and better visualization of fetal structures. This has permitted an increasing number of fetal defects to be diagnosed as early as the end of the first trimester of pregnancy, rather than at the anomaly scan at 20–23 gestational weeks. While depiction of the fetal heart6–8 and its defects at this early gestational age has been the subject of considerable investigation, much less effort has been put into investigating the fetal central nervous system.

Cyr et al.9 described the sonographic appearance of the fetal rhombencephalon in 25 fetuses aged between 8 and 10 gestational weeks. Blaas et al.10,11 were able to demonstrate development of the fetal brain from 7 to 12 weeks of gestation. However, these results were obtained only with purpose-built equipment, preventing implementation in daily clinical practice. Since these studies, improvements in ultrasound equipment with increasingly widespread availability have allowed investigation of the fetal brain in a much larger population, during routine first-trimester scanning.

In our experience, the best images of the posterior fossa are obtained by insonation through the anterior fontanelle in a posteriorly tilted axial plane. The axial
plane is perpendicular to the long axis of the body and to the coronal and sagittal planes. Lateral and posterior–anterior insonation did not allow sufficient imaging in our hands. This is most probably due to the fact that the anterior fontanelle allows better penetration of the ultrasound beam than do other skull structures. Furthermore, the clinically most important measurements in the diagnosis of spina bifida are those of the CM and the 4V, for which the resolution is better and measurements are more accurate axially along the ultrasound beam.

At 11–12 weeks the cerebellum is tiny and located above and dorsal to the 4V. The 4V is delineated by a thin membrane, which we were able to demonstrate in a tilted axial fronto-occipital plane. Later, union of the cerebellar hemispheres takes place and the upper part of the vermis develops.

Our study showed CRL to correlate linearly with TCD, CM and 4V, although the correlation between CRL and 4V, while statistically significant, was poor. In their retrospective study of 544 normal fetuses, Guariglia et al. found a linear correlation between gestational age and TCD measurements between 11 and 17 weeks of gestation. Von Kaisenberg et al. measured transabdominally in an axial lateral view, TCD in 120 fetuses and CM in 117 fetuses between 11 and 14 weeks of gestation, finding an exponential relation between gestational age and both TCD and CM. In both studies, the mean values for TCD at 11 weeks were slightly larger than were those in our study, whereas at 13 weeks the mean values were nearly identical.

Kaisenberg et al. found the mean value for CM to increase from 1.5 mm at 11 weeks to 2.3 mm at 13 weeks. This differs from our findings of a mean of 1.0 mm at 11 weeks and 3.0 mm at 13 weeks. This difference might be due to the fact that the CM is better depicted in an anteroposterior than in a transverse view and our measurements are therefore more accurate.

The reference ranges for the 4V determined in our study correspond well with measurements derived from sagittal sections and axial lateral sections. In the latter of these two studies, 11% of measurements had to be performed transvaginally.

Although the measurements obtained in our study were adequately reproducible, as demonstrated by the inter- and intraobserver repeatability, the fetuses with posterior fossa cyst and spina bifida could in fact be identified without any measurements, i.e. by visual assessment alone (Figures 3 and 4). In the fetus with spina bifida, the posterior of the two transverse echogenic lines, caused by the posterior margin of the 4V, disappeared. This might be a valuable sign in detecting spina bifida at 12–14 weeks of gestation.

The outcomes of the fetuses with posterior fossa cysts are in line with the findings of Nizard et al., who described five cases of cystic malformation of the posterior fossa in the first trimester. Four of their cases had additional major malformations; one baby was diagnosed with isolated Dandy–Walker variant and was alive at 3 years, with normal development.

Our cases with posterior fossa cysts demonstrate how important it is to interpret carefully sonographic findings. It is also of the utmost importance to have sound experience in evaluating the posterior fossa at 12–14 weeks before making clinical decisions on this basis. Furthermore, we believe that cerebral signs of spina bifida have no association with the location of the spinal lesion. Thus, as disease prognosis is dependent mainly on the anatomic level of the lesion, the prognosis being better if the lesion is located at the lower sacral spine, cerebral signs do not allow assessment of prognosis.

In conclusion, we found that assessment of the fetal posterior cranial fossa is feasible from 11 + 3 to 13 + 6 gestational weeks during routine ultrasound examination. In our hands, a tilted anterior–posterior axial insonation through the anterior fontanelle allowed better depiction of the structures of the posterior fossa than did lateral insonation. Furthermore, demonstration of two transverse echogenic lines allowed prima facie assessment of the 4V and CM. Measurements of the 4V, the CM and the transverse cerebellar diameter performed at this gestational age were reliable. The established reference values should assist in detecting fetal anomalies. However, findings must be interpreted carefully, as some supposed malformations might merely be delayed development of brain structures.

REFERENCES

Queries to Author:

AQ1 Please check that all affiliations are correct and complete.

AQ2 How is the wording of this first paragraph now? Note my addition of ‘early’ here – is this ok?

AQ3 Is this rewording in response to your reply ok?

AQ4 Do you want to specify the sonographers like you did later?

AQ5 I see what you mean – I’m glad I asked about my rewording here. I’ve more or less reverted back to what you had before, but please check carefully from this point to the end of the paragraph ("…To achieve this…………."). In particular, note that, because of your reply, I’ve added the first mention of ‘fronto-occipital’ in the statement: “the transducer was tilted caudally from the plane used to measure the biparietal and fronto-occipital diameters”.

However, can I double check that your use of “in an axial fronto-occipital plane” here in the middle of the paragraph, but use of “we insonated in a fronto-occipital direction” at the end of the paragraph are both correct? If they are, and you mean that the axial fronto-occipital plane is the one normally used to measure BPD, I would be tempted to reword this to: “…ultrasound machine. To achieve this, the fetal head was insonated through the anterior fontanelle in an axial fronto-occipital plane, the plane used to measure biparietal and fronto-occipital diameters (Figure 1). The transducer was then tilted caudally from this plane until the fourth ventricle (4V), the cisterna magna (CM) and the cerebellar nodules became visible (Figures 1 and 2). Thus, in contrast to the transverse insonation that is used for measurement of biparietal and fronto-occipital diameters, we insonated in a fronto-occipital direction”. Sorry if I still haven’t fully understood.

AQ6 ‘The measurement was performed three times…’ – is the wording of this sentence now ok?

AQ7 I’ve moved some detail from the results to here, as we discussed – are you happy with this? In particular, is my use of the number ‘671’ ok here?

AQ8 Note that now we’ve changed all mention of the words into abbreviations, you have ‘CM’ representing both ‘cisterna magna’ and ‘anteroposterior diameter of the cisterna magna’ – likewise for the 4V. Is this OK?

AQ9 Figs 5 and 6 - is ‘CI’ ok – it shouldn’t be ‘percentile’?

AQ10 ‘Since these studies, improvements in ultrasound equipment with increasingly widespread availability have allowed investigation of the fetal brain in a much larger population, during routine first-trimester scanning.’

I’ve reworded somewhat this small paragraph and joined it to the previous one – are you happy with this?

AQ11 ‘In our experience,…..’ – is the wording of this sentence ok?

AQ12 By ‘did not allow sufficient imaging’ do you mean the imaging was not possible, or the quality was not adequate for measurements to be made, or something else?

AQ13 I’ve reworded this sentence a bit, but am still not 100% happy with it, in particular, axially along the ultrasound beam″ – any suggestions? We can discuss with Sarah H.

AQ14 I’ve added, ‘Although’ here and, ‘in fact’ a bit later, rather than, ‘however’ – is this ok?

AQ15 ‘Thus, as disease prognosis ‘...’ – is the rewording of this sentence ok?

AQ16 “In our hands, a tilted anterior–posterior axial insonation through the anterior fontanelle allowed better depiction of the structures of the posterior fossa than did lateral insonation.” – note in the third paragraph of the discussion you say “Lateral and posterior–anterior insonation did not allow sufficient imaging in our hands.” – this isn’t contradictory?
After receipt of your corrections your article will be published initially within the online version of the journal.

PLEASE AIM TO RETURN YOUR CORRECTIONS WITHIN 48 HOURS OF RECEIPT OF YOUR PROOF, THIS WILL ENSURE THAT THERE ARE NO UNNECESSARY DELAYS IN THE PUBLICATION OF YOUR ARTICLE

☐ READ PROOFS CAREFULLY

ONCE PUBLISHED ONLINE OR IN PRINT IT IS NOT POSSIBLE TO MAKE ANY FURTHER CORRECTIONS TO YOUR ARTICLE

- This will be your only chance to correct your proof
- Please note that the volume and page numbers shown on the proofs are for position only

☐ ANSWER ALL QUERIES ON PROOFS (Queries are attached as the last page of your proof.)

- List all corrections and send back via e-mail to the production contact as detailed in the covering e-mail, or mark all corrections directly on the proofs and send the scanned copy via e-mail. Please do not send corrections by fax or post

☐ CHECK FIGURES AND TABLES CAREFULLY

- Check size, numbering, and orientation of figures
- All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article
- Review figure legends to ensure that they are complete
- Check all tables. Review layout, title, and footnotes

☐ COMPLETE COPYRIGHT TRANSFER AGREEMENT (CTA) if you have not already signed one

- Please send a scanned signed copy with your proofs by e-mail. Your article cannot be published unless we have received the signed CTA

☐ OFFPRINTS

- Free access to the final PDF offprint or your article will be available via Author Services only. Please therefore sign up for Author Services if you would like to access your article PDF offprint and enjoy the many other benefits the service offers.

Additional reprint and journal issue purchases

- Should you wish to purchase additional copies of your article, please click on the link and follow the instructions provided: http://offprint.cosprinters.com/cos/bw/
- Corresponding authors are invited to inform their co-authors of the reprint options available.
- Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic form, nor deployed in part or in whole in any marketing, promotional or educational contexts without authorization from Wiley. Permissions requests should be directed to mailto: permissionsuk@wiley.com
- For information about ‘Pay-Per-View and Article Select’ click on the following link: http://www3.interscience.wiley.com/aboutus/ppv-articleselect.html
WILEY AUTHOR DISCOUNT CLUB

We would like to show our appreciation to you, a highly valued contributor to Wiley's publications, by offering a unique 25% discount off the published price of any of our books*.

All you need to do is apply for the Wiley Author Discount Card by completing the attached form and returning it to us at the following address:

The Database Group (Author Club)
John Wiley & Sons Ltd
The Atrium
Southern Gate
Chichester
PO19 8SQ
UK

Alternatively, you can register online at www.wileyeurope.com/go/authordiscount

Please pass on details of this offer to any co-authors or fellow contributors.

After registering you will receive your Wiley Author Discount Card with a special promotion code, which you will need to quote whenever you order books direct from us.

The quickest way to order your books from us is via our European website at:

http://www.wileyeurope.com

Key benefits to using the site and ordering online include:
Real-time SECURE on-line ordering
Easy catalogue browsing
Dedicated Author resource centre
Opportunity to sign up for subject-orientated e-mail alerts

Alternatively, you can order direct through Customer Services at:
cs-books@wiley.co.uk, or call +44 (0)1243 843294, fax +44 (0)1243 843303

So take advantage of this great offer and return your completed form today.

Yours sincerely,

Verity Leaver
Group Marketing Manager
author@wiley.co.uk

*TERMS AND CONDITIONS
This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books for their personal use. There must be no resale through any channel. The offer is subject to stock availability and cannot be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to amend the terms of the offer at any time.
To enjoy your 25% discount, tell us your areas of interest and you will receive relevant catalogues or leaflets from which to select your books. Please indicate your specific subject areas below.

<table>
<thead>
<tr>
<th>Area</th>
<th>Sub-areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>[] Public [] Corporate</td>
</tr>
<tr>
<td>Chemistry</td>
<td>[] Analytical [] Industrial/Safety [] Organic [] Inorganic [] Polymer [] Spectroscopy</td>
</tr>
<tr>
<td>Encyclopedia/Reference</td>
<td>[] Business/Finance [] Life Sciences [] Medical Sciences [] Physical Sciences [] Technology</td>
</tr>
<tr>
<td>Earth & Environmental Science</td>
<td>[]</td>
</tr>
<tr>
<td>Hospitality</td>
<td>[]</td>
</tr>
<tr>
<td>Genetics</td>
<td>[] Bioinformatics/Computational Biology [] Proteomics [] Genomics [] Gene Mapping [] Clinical Genetics</td>
</tr>
<tr>
<td>Medical Science</td>
<td>[] Cardiovascular [] Diabetes [] Endocrinology [] Imaging [] Obstetrics/Gynaecology [] Oncology [] Pharmacology [] Psychiatry</td>
</tr>
<tr>
<td>Non-Profit</td>
<td>[]</td>
</tr>
<tr>
<td>Architecture</td>
<td>[]</td>
</tr>
<tr>
<td>Business/Management</td>
<td>[]</td>
</tr>
<tr>
<td>Computer Science</td>
<td>[] Database/Data Warehouse [] Internet Business [] Networking [] Programming/Software [] Development [] Object Technology</td>
</tr>
<tr>
<td>Engineering</td>
<td>[] Civil [] Communications Technology [] Electronic [] Environmental [] Industrial [] Mechanical</td>
</tr>
<tr>
<td>Finance/Investing</td>
<td>[] Economics [] Institutional [] Personal Finance</td>
</tr>
<tr>
<td>Life Science</td>
<td>[]</td>
</tr>
<tr>
<td>Landscape Architecture</td>
<td>[]</td>
</tr>
<tr>
<td>Mathematics</td>
<td>[]</td>
</tr>
<tr>
<td>Statistics</td>
<td>[]</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>[]</td>
</tr>
<tr>
<td>Materials Science</td>
<td>[]</td>
</tr>
<tr>
<td>Physics/Physical Science</td>
<td>[]</td>
</tr>
</tbody>
</table>
I confirm that I am (*delete where not applicable):

a **Wiley** Book Author/Editor/Contributor* of the following book(s):

a **Wiley** Journal Editor/Contributor/Editorial Board Member* of the following journal(s):

SIGNATURE: …………………………………………………………………………………… Date: ………………………………………

PLEASE COMPLETE THE FOLLOWING DETAILS IN BLOCK CAPITALS:

| TITLE: (e.g. Mr, Mrs, Dr) …………………… FULL NAME: …………………………………………………………………………….… |
| JOB TITLE (or Occupation): …… |
| DEPARTMENT: ………. |
| COMPANY/INSTITUTION: ……… |
| ADDRESS: ……… |
| TOWN/CITY: ……… |
| COUNTY/STATE: …… |
| COUNTRY: …… |
| POSTCODE/ZIP CODE: ……… |
| DAYTIME TEL: …… |
| FAX: ……… |
| E-MAIL: …… |

YOUR PERSONAL DATA

We, John Wiley & Sons Ltd, will use the information you have provided to fulfil your request. In addition, we would like to:

1. Use your information to keep you informed by post of titles and offers of interest to you and available from us or other Wiley Group companies worldwide, and may supply your details to members of the Wiley Group for this purpose.
 [] Please tick the box if you do **NOT** wish to receive this information

2. Share your information with other carefully selected companies so that they may contact you by post with details of titles and offers that may be of interest to you.
 [] Please tick the box if you do **NOT** wish to receive this information.

E-MAIL ALERTING SERVICE

We also offer an alerting service to our author base via e-mail, with regular special offers and competitions. If you **DO** wish to receive these, please opt in by ticking the box [].

If, at any time, you wish to stop receiving information, please contact the Database Group (databasegroup@wiley.co.uk) at John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, PO19 8SQ, UK.

TERMS & CONDITIONS

This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books for their personal use. There should be no resale through any channel. The offer is subject to stock availability and may not be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to vary the terms of the offer at any time.

PLEASE RETURN THIS FORM TO:

Database Group (Author Club), John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, PO19 8SQ, UK author@wiley.co.uk
Fax: +44 (0)1243 770154