Short Report

Maternal uniparental isodisomy and heterodisomy on chromosome 6 encompassing a CUL7 gene mutation causing 3M syndrome

We report a case of segmental uniparental maternal hetero- and isodisomy involving the whole of chromosome 6 (mat-hUPD6 and mat-iUPD6) and a cullin 7 (CUL7) gene mutation in a Japanese patient with 3M syndrome. 3M syndrome is a rare autosomal recessive disorder characterized by severe pre- and postnatal growth retardation that was recently reported to involve mutations in the CUL7 or obscurin-like 1 (OBSL1) genes. We encountered a patient with severe growth retardation, an inverted triangular gloomy face, an inverted triangle-shaped head, slender long bones, inguinal hernia, hydrocele testis, mild ventricular enlargement, and mild mental retardation. Sequence analysis of the CUL7 gene of the patient revealed a homozygous missense mutation, c.2975G>C. Genotype analysis using a single nucleotide polymorphism array revealed two mat-hUPD and two mat-iUPD regions involving the whole of chromosome 6 and encompassing CUL7. 3M syndrome caused by complete paternal iUPD of chromosome 6 involving a CUL7 mutation has been reported, but there have been no reports describing 3M syndrome with maternal UPD of chromosome 6. Our results represent a combination of iUPDs and hUPDs from maternal chromosome 6 involving a CUL7 mutation causing 3M syndrome.

Conflict of interest

None of the authors of this paper declares a conflict of interest.

3M syndrome is a rare inherited autosomal recessive disorder characterized by pre- and postnatal growth retardation, characteristic facial features, and skeletal anomalies. Clinical features of 3M syndrome include large head circumference, broad forehead, a triangular facial outline, dolichocephaly, long philtrum, short stature, short thorax and neck, tall vertebral bodies, and slender
long bones and ribs. Males with 3M syndrome occasionally have hypogonadism and hypospadias (1–9). However, intelligence is unaffected and karyotype is normal on conventional chromosome analysis.

In patients with 3M syndrome, disease-causing mutations have been identified in the cullin 7 (CUL7, MIM *609577) and obscurin-like 1 (OBSL1, MIM *610991) genes (7–9). Mutations of CUL7 are the major cause of 3M syndrome, accounting for 80% of previously reported cases, whereas OBSL1 accounts for 20% of cases (8, 10).

Uniparental disomy (UPD) is the transmission pattern of either two copies of the identical chromosome (uniparental isodisomy; iUPD) or of both homologous chromosomes (uniparental disomy; hUPD) from one parent with no contribution from the other parent (11). Phenotypes that are clinically associated with paternal UPD of chromosome 6 (patUPD6) and genomic imprinting have been established, but because of the rarity of maternal UPD of chromosome 6 (matUPD6), clinical features have not yet been established. Here, we report a patient with a homozygous mutation in CUL7 due to a maternal iUPD of chromosome 6 (mat-iUPD6).

Materials and methods

Clinical report

A Japanese male patient with 3M syndrome was examined in this study. The patient was delivered by caesarean section at 36 weeks of gestation without a family history of 3M syndrome (Fig. 1a). His birth weight was 1000 g (−4.8 SD), length 33.0 cm (−6.8 SD), head circumference 30.2 cm (−1.5 SD), and Apgar score 7/9. Feeding difficulty was noted during the neonatal period. He remained in a neonatal intensive care unit for 2 months and was referred to our group because of developmental delay and muscle hypotonia at 4 months. The patient displayed anomalies including hypospadias, inguinal hernia, hydrocele testis, inverted triangular gloomy face, malar hypoplasia, long eyelashes, epicanthal folds, short nose, anteverted nares, full lips, long philtrum, pointed chin, short chest, grooved lower anterior thorax, hypermobility of joints, and slender long bones (Fig. 1a,b). Mild ventricular enlargement was observed by neuroradiological studies. His growth was severely retarded.

At 2 years 9 months, his height, weight, and head circumference were 69.3 cm (−4.6 SD), 6.8 kg (−6.7 SD), and 48 cm (−1.2 SD), respectively. His head size was disproportionately large compared to his height. Thus the patient was diagnosed as suffering from 3M syndrome. He could understand simple sentences, but could not speak nor sit alone. Partial growth hormone (GH) deficiency was noted. GH replacement therapy was started from 2 years. GH was effective without side effects. At 5 years, his height and weight were 84.8 cm (−5.9 SD) and 10 kg (−3 SD), respectively. He was moderately mentally retarded.

Fig. 1. Facial and skeletal features of the patient at 2 years 7 months of age. (a) Note the inverted triangular gloomy face, short nose, full lips, and long philtrum. (b) Note the slender long bones. (c) Electropherograms of the patient and parents. DNA sequence showing a single base change substituting cytosine for guanine, which results in p.R992P, in the patient. M, mother; P, patient; and F, father.
Conventional and molecular cytogenetic analyses

G-banding and FISH analysis at the **CUL7** locus showed a normal karyotype in the patient and the parents with no microdeletion at **CUL7** locus in the patient (data not shown).

Microarray analysis

To confirm paternity, and to find a small size deletion, we performed SNP6.0 analysis. However, no copy number variations (CNVs) were identified in the region containing both **CUL7** and **OBSL1** genes (Fig. 2a). The other variants overlap with reported regions of CNVs in the Database of Genomic Variants (http://projects.tcag.ca/variation) or were transmitted from the parents (data not shown).

To confirm matUPD6 in the patient, we examined the genotypes of the patient/father/mother trio. The results using informative markers indicated that there were two maternal heterodisomic regions (hUPD6-1 and hUPD6-2) and two maternal isodisomic regions (iUDP6-1 and iUDP6-2) in chromosome 6, respectively (Fig. 2 and Table 1). The results indicated that the patient had inherited two alleles from his mother, but none from his father, in chromosome 6. The final karyotype of this patient was 46,XY,upd(6)mat and arr 6p25.3p22.3(110,391–16,287,166)×2 htz mat,6p 22.3q12(16,290,223–65,796,893)×2 htz mat,6q 12q25.1(65,799,990–150,517,779)×2 htz mat,6q 25.1q27(150,518,012–170,759,956)×2 htz mat.

Discussion

We identified a causative homozygous mutation in **CUL7** in a patient with 3M syndrome. The results clearly indicate that mat-iUPD6 involving a mutant allele of the **CUL7** gene caused 3M syndrome in the patient.

matUPD6 is relatively rare and seven cases have been reported. The first case was a renal transplant patient who showed growth retardation at birth and mat-iUPD6 (12). The second case was a patient with congenital adrenal hyperplasia (CAH) resulting from a homozygous mutation in the 21-hydroxylase gene (**CYP21**), and had intrauterine growth retardation (IUGR) and mat-iUPD6 (13). The third case was a macerated male fetus from a pregnancy terminated at 23 weeks of gestation because of intrauterine death. The patient showed a mosaic trisomy 6 (14). The fourth case was a male patient with two clinical phenotypes, Klinefelter’s syndrome and CAH. His karyotype was mosaic 48,XXY, +mar[30]/47,XXX[20] and

Results

Genomic sequencing

We sequenced all 26 coding exons and flanking intronic regions of the **CUL7** gene, which spans a genomic region of approximately 16.3 kb, in the family. In the patient, we detected a homozygous missense mutation (c.2975G>C) in exon 15, which resulted in the substitution of proline for arginine at amino acid residue 992 (p.R992P) (Fig. 1c). The mother was a heterozygous carrier of the mutation, whereas the father was homozygous for the wild-type allele (Fig. 1c). The p.R992P mutation was not detected in 100 unrelated control individuals.

Conventional cytogenetic studies and FISH analysis

We obtained blood samples under written informed consent for participation in this study. Conventional cytogenetic examination of G-banded chromosomes from peripheral blood lymphocytes was performed. We also performed fluorescence in situ hybridization (FISH) analysis on lymphocyte metaphase spreads from the patient using two Bacterial Artificial Chromosome (BAC) clones containing **CUL7**, RP11-628J2 and RP11-653G5, as probes.

Genomic sequencing

Genomic DNA was extracted from peripheral blood following standard protocols. For mutation analysis, we designed primers to amplify all the coding exons of **CUL7** and the flanking intron sequences. Direct sequencing was carried out using a BigDye Terminator v3.1 Cycle sequencing Kit™ and separated on a Genetic Analyzer 3130xl (Applied Biosystems Inc., Foster City, CA). Sequence electropherograms were aligned with sequencher™ software (Gendcodes, Ann Arbor, MI) to visually inspect base alterations.

Microarray analysis

We performed genome-wide single nucleotide polymorphism (SNP) genotyping using Genome-Wide Human SNP Array 6.0 (SNP6.0) following the manufacturer’s instructions (Affymetrix, Santa Clara, CA, http://www.affymetrix.com/index.affx). The data generated from Genotyping Console (GTC) 4.0 were loaded into CHROMOSOME ANALYSIS SUITE (CHAS) 1.0.1 software to display the results. We carried out UPD analyses of the patient using genotype data in trio. Genomic positions of SNPs corresponded to the March 2006 human genome (hg18).
Maternal iUPD and hUPD on chromosome 6

Fig. 2. SNP6.0 data. (a) Plots of the SNP6.0 data displayed in ChAS 1.0.1 showing the log2 ratio plot of copy number state, allele difference plot, and loss of heterozygosity (LOH) segment (purple box) (P, patient; M, mother; and F, father). (b) The allele difference graph represents the genotypes for each individual single nucleotide polymorphism (SNP). Dots with a value of 1, −1, and 0 represent SNPs with AA, BB, and AB genotypes, respectively. A vertical dashed line indicates the CUL7 locus. (c) The LOH segment plot indicates nine LOH regions on chromosome 6. iUPD6-1 and iUPD6-2 denote the regions of uniparental isodisomy (red box). hUPD6-1 and hUPD6-2 denote the regions of uniparental heterodisomy (blue box). The genotypes on chromosome 6 indicate maternal heterodisomy or isodisomy in the affected offspring [only the uniparental disomy (UPD) markers are displayed].

Table 1. Examination of SNPs from a patient/father/mother trio

<table>
<thead>
<tr>
<th>Genotype of trio (patient/father/mother)</th>
<th>hUPD6-1</th>
<th>iUPD6-1</th>
<th>hUPD6-2</th>
<th>iUPD6-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>iUPD</td>
<td>AA/BB/AB</td>
<td>0</td>
<td>534</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>BB/AA/AB</td>
<td>0</td>
<td>576</td>
<td>3</td>
</tr>
<tr>
<td>iUPD or hUPD</td>
<td>AA/BB/AA</td>
<td>178</td>
<td>543</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td>BB/AA/BB</td>
<td>196</td>
<td>506</td>
<td>563</td>
</tr>
<tr>
<td>Share genotype (patient/mother)</td>
<td>iUPD or hUPD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA/AA</td>
<td>2,812</td>
<td>5,897</td>
<td>9,716</td>
</tr>
<tr>
<td></td>
<td>BB/BB</td>
<td>2,799</td>
<td>5,785</td>
<td>9,557</td>
</tr>
<tr>
<td></td>
<td>AB/AB</td>
<td>1,699</td>
<td>19</td>
<td>6,384</td>
</tr>
<tr>
<td>Total of share genotype</td>
<td></td>
<td>7,310</td>
<td>11,701</td>
<td>25,657</td>
</tr>
<tr>
<td>Share genotype rate (%)</td>
<td></td>
<td>99.82</td>
<td>78.20</td>
<td>99.89</td>
</tr>
<tr>
<td>Total SNP probe</td>
<td></td>
<td>7,323</td>
<td>14,963</td>
<td>25,684</td>
</tr>
<tr>
<td></td>
<td>Start SNP</td>
<td>rs4959515</td>
<td>rs9370869</td>
<td>rs9354209</td>
</tr>
<tr>
<td></td>
<td>Start position</td>
<td>110,391</td>
<td>16,290,223</td>
<td>65,799,990</td>
</tr>
<tr>
<td></td>
<td>End SNP</td>
<td>rs9477050</td>
<td>rs9453156</td>
<td>rs7765984</td>
</tr>
<tr>
<td></td>
<td>End position</td>
<td>16,287,166</td>
<td>65,796,893</td>
<td>150,517,779</td>
</tr>
<tr>
<td></td>
<td>Size (bp)</td>
<td>16,176,776</td>
<td>49,506,671</td>
<td>84,717,790</td>
</tr>
<tr>
<td></td>
<td>Cytoband</td>
<td>p25.3-p22.3</td>
<td>p22.3-q12</td>
<td>q12-q25.1</td>
</tr>
</tbody>
</table>

hUPD, uniparental heterodisomy; iUPD, uniparental isodisomy; iUPD or hUPD, UPD could not be defined as isodisomy or heterodisomy; SNP, single nucleotide polymorphism.

Each row contains information on each matUPD6 inheritance block identified by trio haplotype analysis.
both the X chromosome and chromosome 6 showed maternal iUPD. This case also was notable for IUGR and growth retardation at 8 months of age (15). The fifth case was a fetus with IUGR at 29 weeks of pregnancy from a 45-year-old patient. The case was ascertained as trisomy 6 mosaicism in cultured chorionic villi but disomy in amniocytes; analysis of DNA markers in amniocytes and parental samples revealed mat-iUPD6 in disomy cells (16). The sixth case was a male infant with molybdenum cofactor deficiency who showed developmental delay. SNP analysis with the trio revealed that at least 6p21.1-6p24.3 were mat-iUPD6, but not another region were remain unclear (17). The seventh case was a patient with cleft lip and palate, and showed a complete maternal hUPD on chromosome 6 (mat-hUPD6). This case had no notable IUGR in the serial ultrasound examination (18). Taken together, IUGR and growth retardation were found in the cases with mat-iUPD6 (12, 13, 15–17), while these were not found in cases with mat-hUPD6 (14, 18). The IUGR and growth retardation in cases of mat-iUPD6 may be the result of homozygosity of chromosome 6. On the basis of these reports, no clear maternal imprinting effect of chromosome 6 can be established; however, recently, a complete gain of methylation phenotype at insulin-like growth factor 2 receptor was shown in patients with growth restriction (19).

The patient with homozygous mutation in CUL7 and matUPD6 had clinical features compatible with 3M syndrome. However, the patient displayed certain features that have not been previously reported among patients with CUL7 mutations such as mild mental retardation, inguinal hernia, hydrocele testis, and mild ventricular enlargement (7, 8, 20). Mild mental retardation is an especially characteristic phenotype in our case because most patients with 3M syndrome have normal intelligence. It is difficult to determine whether matUPD6 had a significant role in the development of certain feature in our case.

Here we report a case of 3M syndrome with a homozygous mutation that resulted from maternal iUPD, including the CUL7 gene. Although complete paternal or maternal UPD for chromosome 6 has previously been reported, this is the first report of a patient with 3M syndrome who has a mixture of mat-hUPD6 and mat-iUPD6 regions. Our results emphasize that UPD should be considered possible mechanism for developing the autosomal recessive disorders including 3M syndrome.

Acknowledgements
We are grateful to the patient and his parents for their participation in this research. We also thank Ms Miho Ooga and Ms Chisa Hayashida for technical assistance. K. I. Y. was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Health, Labour and Welfare, and in part by the Takada Scientific Foundation and the Naito Foundation.

References